SNSB
Summer Term 2013
Ergodic Theory and Additive
Combinatorics
Laurenţiu Leuştean
03.07.2013

Seminar 9

(S9.1) Let $f \in \mathcal{M}_{\mathbb{C}}(X, \mathcal{B})$ and $n \geq 1$.
(i) If f is T-invariant (a.e.), then $S_{n} f=f$ (a.e.).
(ii) $S_{n} f \in \mathcal{M}_{\mathbb{C}}(X, \mathcal{B})$.
(iii) $S_{n} f=\frac{1}{n} \sum_{k=0}^{n-1} U_{T^{k}} f$.
(iv) For any $p \geq 1, f \in L^{p}(X, \mathcal{B}, \mu)$ (resp. $L_{\mathbb{R}}^{p}(X, \mathcal{B}, \mu)$) implies $S_{n} f \in L^{p}(X, \mathcal{B}, \mu)$ (resp. $\left.L_{\mathbb{R}}^{p}(X, \mathcal{B}, \mu)\right)$.
(v) For all $x \in X, \frac{n+1}{n} S_{n+1}(x)-S_{n} f(T x)=\frac{1}{n} f(x)$.
(vi) If $f \in \mathcal{M}_{\mathbb{R}}(X, \mathcal{B})$, then $\underline{f} \circ T=\underline{f}$ and $\bar{f} \circ T=\bar{f}$.
(vii) $\int_{X} S_{n} f d \mu=\int_{X} f d \mu$.
(viii) If $f \in L_{\mathbb{R}}^{1}(X, \mathcal{B}, \mu)$ is nonnegative, then $S_{n} f \in L_{\mathbb{R}}^{1}(X, \mathcal{B}, \mu)$ is nonnegative and $\left\|S_{n} f\right\|_{1}=\|f\|_{1}$.

Proof. (i) Obviously, since $f \circ T=f$ (a.e.) implies $f \circ T^{k}=f$ (a.e.) for all $k \geq 0$.
(ii) For all $k \geq 0$, we have that $f \circ T^{k}$ is measurable, as a composition of measurable functions. Hence, $S_{n} f$ is measurable as a finite sum of measurable functions.
(iii) For every $x \in X$,

$$
S_{n} f(x)=\frac{1}{n} \sum_{k=0}^{n-1} U_{T^{k}} f(x)=\left(\frac{1}{n} \sum_{k=0}^{n-1} U_{T^{k}} f\right)(x) .
$$

(iv) Apply (iii) and Theorem 3.1.6.
(v)

$$
\begin{aligned}
S_{n}(T x) & =\frac{1}{n} \sum_{k=0}^{n-1} f\left(T^{k+1} x\right)=\frac{1}{n} \sum_{k=0}^{n} f\left(T^{k} x\right)-\frac{1}{n} f(x) \\
& =\frac{n+1}{n} \cdot \frac{1}{n+1} \sum_{k=0}^{n} f\left(T^{k} x\right)-\frac{1}{n} f(x)=\frac{n+1}{n} S_{n+1}(x)-\frac{1}{n} f(x) .
\end{aligned}
$$

Hence, $\frac{n+1}{n} S_{n+1}(x)-S_{n} f(T x)=\frac{1}{n} f(x)$.
(vi) Let $x \in X$. Then

$$
\begin{aligned}
&(\underline{f} \circ T)(x)=\underline{f}(T x)=\lim _{n} \inf \\
& S_{n} f(T x)=\liminf _{n}\left(\frac{n+1}{n} S_{n+1}(x)-\frac{1}{n} f(x)\right) \\
&=\liminf _{n}\left(\frac{n+1}{n} S_{n+1} f(x)\right), \quad \text { since } \lim _{n \rightarrow \infty}-\frac{1}{n} f(x)=0 \\
&=\liminf _{n} S_{n+1} f(x), \quad \text { since } \lim _{n \rightarrow \infty} \frac{n+1}{n}=1 \\
&=\underline{f}(x) .
\end{aligned}
$$

We prove similarly that $(\bar{f} \circ T)(x)=\bar{f}(x)$.
(vii) We have that

$$
\int_{X} S_{n} f d \mu=\frac{1}{n} \sum_{k=0}^{n-1} \int_{X} U_{T^{k}} f d \mu=\frac{1}{n} \sum_{k=0}^{n-1} \int_{X} f d \mu
$$

by Proposition 3.1.5.
(viii) Since $U_{T^{k}}$ is positive for all k, we get that $S_{n} f \in L_{\mathbb{R}}^{1}(X, \mathcal{B}, \mu)$ is nonnegative. Apply (vii) to get that

$$
\left\|S_{n} f\right\|_{1}=\int_{X} S_{n} f d \mu=\int_{X} f d \mu=\|f\|_{1} .
$$

(S9.2) Let $A, B \in \mathcal{B}$ and $n \geq 1$.
(i) $S_{n} \chi_{A}=\frac{1}{n} \sum_{k=0}^{n-1} \chi_{T^{-k}(A)}$ and $\chi_{B} \cdot S_{n} \chi_{A}=\frac{1}{n} \sum_{k=0}^{n-1} \chi_{T^{-k}(A) \cap B}$.
(ii) $\int_{X} S_{n} \chi_{A}=\mu(A)$.
(iii) $\int_{X} \chi_{B} \cdot S_{n} \chi_{A} d \mu=\frac{1}{n} \sum_{k=0}^{n-1} \mu\left(T^{-k}(A) \cap B\right)$.

Proof. Firstly, let us remark that since $\mu(X)<\infty, \int_{X} \chi_{A} d \mu=\mu(A) \leq \mu(X)<\infty$, hence $\chi_{A} \in L_{\mathbb{R}}^{p}(X, \mathcal{B}, \mu)$ for all $1 \leq p<\infty$ and $A \in \mathcal{B}$. Furthermore, χ_{A} is nonegative.
(i) It is an easy exercise.
(ii) Apply Proposition 4.0.7.(vii) with $f:=\chi_{A}$.
(iii)

$$
\begin{aligned}
\int_{X} \chi_{B} \cdot S_{n} \chi_{A} & =\int_{X} \frac{1}{n} \sum_{i=0}^{n-1} \chi_{T^{-i}(A) \cap B} d \mu=\frac{1}{n} \sum_{i=0}^{n-1} \int_{X} \chi_{T^{-i}(A) \cap B} d \mu \\
& =\frac{1}{n} \sum_{i=0}^{n-1} \mu\left(T^{-i}(A) \cap B\right)
\end{aligned}
$$

(S9.3)
(i) Let X be a nonempty set, $\left(E_{n}\right)_{n \geq 1}$ be a sequence of subsets of X and $f: X \rightarrow \mathbb{R}$. Prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \chi_{\cup_{i=1}^{n} E_{i}} f=\chi_{\cup_{i \geq 1} E_{i}} f . \tag{D.3}
\end{equation*}
$$

(ii) Let (X, \mathcal{B}, μ) be a probability space, $f \in L_{\mathbb{R}}^{1}(X, \mathcal{B}, \mu),\left(E_{n}\right)_{n \geq 1}$ be an increasing sequence of measurable sets, and $E=\bigcup_{n \geq 1} E_{n}$. Prove that

$$
\begin{equation*}
\int_{E} f d \mu=\lim _{n \rightarrow \infty} \int_{E_{n}} f d \mu \tag{D.4}
\end{equation*}
$$

Proof. (i) Let

$$
B_{n}:=\bigcup_{i=1}^{n} E_{i}, \quad B:=\bigcup_{i=1}^{\infty} E_{i}, \quad g_{n}:=\chi_{B_{n}} f, \quad g:=\chi_{B} f .
$$

For every $x \in X$, we have two cases:
(a) $x \in B$. Then $g(x)=f(x)$ and there exists $N \geq 1$ such that $x \in E_{N}$. It follows that $x \in B_{n}$ for all $n \geq N$, hence $g_{n}(x)=f(x)$ for all $n \geq N$. In particular, $\lim _{n \rightarrow \infty} g_{n}(x)=f(x)=g(x)$.
(b) $x \notin B$. Then $g(x)=0$ and $x \notin E_{n}$ for any $n \geq 1$. It follows that $x \notin B_{n}$ for any $n \geq 1$, hence $g_{n}(x)=0$ for all $n \geq 1$. In particular, $\lim _{n \rightarrow \infty} g_{n}(x)=0=g(x)$.
(ii) Let $g_{n}:=\chi_{E_{n}} f$ and $g:=\chi_{E} f$. We have that
(a) $\lim _{n \rightarrow \infty} g_{n}=\lim _{n \rightarrow \infty} \chi_{E_{n}} f=\lim _{n \rightarrow \infty} \chi_{\cup_{i=1}^{n} E_{i}} f$, since $\left(E_{n}\right)$ is increasing. Apply now A.2.8 to conclude that $\lim _{n \rightarrow \infty} g_{n}=\chi_{E} f=g$.
(b) $\left|g_{n}\right| \leq|f|$ for all $n \geq 1$ and $|f| \in L_{\mathbb{R}}^{1}(X, \mathcal{B}, \mu)$.

We can apply Lebesgue Dominated Convergence Theorem to conclude that

$$
\lim _{n \rightarrow \infty} \int_{X} g_{n} d \mu=\int_{X} g d \mu
$$

It follows that

$$
\begin{aligned}
\int_{E} f d \mu & =\int_{X} \chi_{E} f d \mu=\int_{X} g d \mu=\lim _{n \rightarrow \infty} \int_{X} g_{n} d \mu=\lim _{n \rightarrow \infty} \int_{X} \chi_{E_{n}} f d \mu \\
& =\lim _{n \rightarrow \infty} \int_{E_{n}} f d \mu
\end{aligned}
$$

(S9.4)
Proposition. Let (X, \mathcal{B}, μ, T) be a MPS. The following are equivalent
(i) T is ergodic.
(ii) Whenever $f: X \rightarrow \mathbb{C}$ is measurable and $U_{T} f=f$, then f is constant a.e..
(iii) Whenever $f: X \rightarrow \mathbb{C}$ is measurable and $U_{T} f=f$ a.e., then f is constant a.e..
(iv) Whenever $f: X \rightarrow \mathbb{R}$ is measurable and $U_{T} f=f$, then f is constant a.e..
(v) Whenever $f: X \rightarrow \mathbb{R}$ is measurable and $U_{T} f=f$ a.e., then f is constant a.e..

Proof. The following implications are trivial: (iii) \Rightarrow (ii), (v) \Rightarrow (iv), (iii) \Rightarrow (v), (ii) \Rightarrow (iv).
$(\mathrm{v}) \Rightarrow$ (iii) and (iv) \Rightarrow (ii). By considering real and imaginary parts and using the fact that U_{T} is linear, it suffices to consider $f \in \mathcal{M}_{\mathbb{R}}(X, \mathcal{B})$.
(ii) \Rightarrow (i) Let $A \in \mathcal{B}$ be such that $T^{-1}(A)=A$. Then χ_{A} is measurable and $U_{T} \chi_{A}=$ $\chi_{T^{-1}(A)}=\chi_{A}$, so we can apply (ii) to conclude that χ_{A} is constant a.e. Thus, either $\chi_{A}=1$ a.e., in which case $\mu(X \backslash A)=0$ or $\chi_{A}=0$ a.e., in which case $\mu(A)=0$.
(i) \Rightarrow (v) Let $f: X \rightarrow \mathbb{R}$ be measurable with $U_{T} f=f$ a.e.. Hence, if $Y:=\{x \in X \mid$ $\left.U_{T} f=f\right\}$, then $\mu(Y)=1$. Define for each $m \geq 0$ and $k \in \mathbb{Z}$,

$$
\begin{equation*}
A_{m, k}=\left\{x \in Y \left\lvert\, \frac{k}{2^{m}} \leq f(x)<\frac{k+1}{2^{m}}\right.\right\} . \tag{D.5}
\end{equation*}
$$

It is easy to see that the T-invariance of f implies that $T^{-1}\left(A_{m, k}\right)=A_{m, k}$ for all m, k. Furthermore, for fixed $m \geq 0,\left(A_{m, k}\right)_{k \in \mathbb{Z}}$ is a countable family of pairwise disjoint sets satisfying $Y=\bigcup_{k \in \mathbb{Z}} A_{m, k}$. The ergodicity of T implies that for every $m \geq 0$ there exists $k_{m} \in \mathbb{Z}$ such that $\mu\left(A_{m, k_{m}}\right)=1$ and $\mu\left(A_{m, k}\right)=0$ for all $k \neq k_{m}$. Let

$$
A:=\bigcap_{m \geq 0} A_{m, k_{m}} .
$$

Note that

$$
Y=\bigcap_{m \geq 0} \bigcup_{k \in \mathbb{Z}} A_{m, k}=\bigcup\left(A_{1, p_{1}} \cap A_{2, p_{2}} \cap \ldots A_{m, p_{m}} \cap \ldots\right)
$$

If at least one of p_{m} 's is different from k_{m}, then the measure of the intersection is 0 . Thus, we must have $\mu(A)=1$.

Let us prove that f is constant on A. Assume by contradiction that there are $x, y \in A$ with $f(x)-f(y)>0$ and take $M \geq 0$ such that $2^{M}(f(x)-f(y))>1$. On the other hand $k_{M} \leq 2^{M} f(x), 2^{M} f(y)<k_{M}+1$, hence $2^{M}(f(x)-f(y))<1$. We have got a contradiction.

