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(S9.1) Let f ∈ MC(X,B) and n ≥ 1.

(i) If f is T -invariant (a.e.), then Snf = f (a.e.).

(ii) Snf ∈ MC(X,B).

(iii) Snf =
1

n

n−1
∑

k=0

UT kf .

(iv) For any p ≥ 1, f ∈ Lp(X,B, µ) (resp. Lp
R
(X,B, µ)) implies Snf ∈ Lp(X,B, µ) (resp.

Lp
R
(X,B, µ)).

(v) For all x ∈ X,
n + 1

n
Sn+1(x) − Snf(Tx) =

1

n
f(x).

(vi) If f ∈ MR(X,B), then f ◦ T = f and f ◦ T = f .

(vii)

∫

X

Snf dµ =

∫

X

f dµ.

(viii) If f ∈ L1
R
(X,B, µ) is nonnegative, then Snf ∈ L1

R
(X,B, µ) is nonnegative and

‖Snf‖1 = ‖f‖1.

Proof. (i) Obviously, since f ◦ T = f (a.e.) implies f ◦ T k = f (a.e.) for all k ≥ 0.

(ii) For all k ≥ 0, we have that f ◦ T k is measurable, as a composition of measurable
functions. Hence, Snf is measurable as a finite sum of measurable functions.

(iii) For every x ∈ X,

Snf(x) =
1

n

n−1
∑

k=0

UT kf(x) =

(

1

n

n−1
∑

k=0

UT kf

)

(x).



(iv) Apply (iii) and Theorem 3.1.6.

(v)

Sn(Tx) =
1

n

n−1
∑

k=0

f(T k+1x) =
1

n

n
∑

k=0

f(T kx) −
1

n
f(x)

=
n + 1

n
·

1

n + 1

n
∑

k=0

f(T kx) −
1

n
f(x) =

n + 1

n
Sn+1(x) −

1

n
f(x).

Hence,
n + 1

n
Sn+1(x) − Snf(Tx) =

1

n
f(x).

(vi) Let x ∈ X. Then

(f ◦ T )(x) = f(Tx) = lim inf
n

Snf(Tx) = lim inf
n

(

n + 1

n
Sn+1(x) −

1

n
f(x)

)

= lim inf
n

(

n + 1

n
Sn+1f(x)

)

, since lim
n→∞

−
1

n
f(x) = 0

= lim inf
n

Sn+1f(x), since lim
n→∞

n + 1

n
= 1

= f(x).

We prove similarly that (f ◦ T )(x) = f(x).

(vii) We have that

∫

X

Snf dµ =
1

n

n−1
∑

k=0

∫

X

UT kf dµ =
1

n

n−1
∑

k=0

∫

X

f dµ,

by Proposition 3.1.5.

(viii) Since UT k is positive for all k, we get that Snf ∈ L1
R
(X,B, µ) is nonnegative. Apply

(vii) to get that

‖Snf‖1 =

∫

X

Snf dµ =

∫

X

f dµ = ‖f‖1.

(S9.2) Let A, B ∈ B and n ≥ 1.

(i) SnχA =
1

n

n−1
∑

k=0

χT−k(A) and χB · SnχA =
1

n

n−1
∑

k=0

χT−k(A)∩B.



(ii)

∫

X

SnχA = µ(A).

(iii)

∫

X

χB · SnχA dµ =
1

n

n−1
∑

k=0

µ(T−k(A) ∩ B).

Proof. Firstly, let us remark that since µ(X) < ∞,
∫

X
χA dµ = µ(A) ≤ µ(X) < ∞, hence

χA ∈ Lp
R
(X,B, µ) for all 1 ≤ p < ∞ and A ∈ B. Furthermore, χA is nonegative.

(i) It is an easy exercise.

(ii) Apply Proposition 4.0.7.(vii) with f := χA.

(iii)

∫

X

χB · SnχA =

∫

X

1

n

n−1
∑

i=0

χT−i(A)∩B dµ =
1

n

n−1
∑

i=0

∫

X

χT−i(A)∩B dµ

=
1

n

n−1
∑

i=0

µ(T−i(A) ∩ B).

(S9.3)

(i) Let X be a nonempty set, (En)n≥1 be a sequence of subsets of X and f : X → R.
Prove that

lim
n→∞

χ∪n

i=1
Ei

f = χ∪i≥1Ei
f. (D.3)

(ii) Let (X,B, µ) be a probability space, f ∈ L1
R
(X,B, µ), (En)n≥1 be an increasing

sequence of measurable sets, and E =
⋃

n≥1

En. Prove that

∫

E

f dµ = lim
n→∞

∫

En

f dµ. (D.4)

Proof. (i) Let

Bn :=
n
⋃

i=1

Ei, B :=
∞
⋃

i=1

Ei, gn := χBn
f, g := χBf.

For every x ∈ X, we have two cases:

(a) x ∈ B. Then g(x) = f(x) and there exists N ≥ 1 such that x ∈ EN . It follows
that x ∈ Bn for all n ≥ N , hence gn(x) = f(x) for all n ≥ N . In particular,
lim

n→∞
gn(x) = f(x) = g(x).



(b) x ∈/ B. Then g(x) = 0 and x ∈/ En for any n ≥ 1. It follows that x ∈/ Bn for any
n ≥ 1, hence gn(x) = 0 for all n ≥ 1. In particular, lim

n→∞
gn(x) = 0 = g(x).

(ii) Let gn := χEn
f and g := χEf . We have that

(a) lim
n→∞

gn = lim
n→∞

χEn
f = lim

n→∞
χ∪n

i=1
Ei

f , since (En) is increasing. Apply now A.2.8

to conclude that lim
n→∞

gn = χEf = g.

(b) |gn| ≤ |f | for all n ≥ 1 and |f | ∈ L1
R
(X,B, µ).

We can apply Lebesgue Dominated Convergence Theorem to conclude that

lim
n→∞

∫

X

gn dµ =

∫

X

g dµ.

It follows that
∫

E

f dµ =

∫

X

χEf dµ =

∫

X

g dµ = lim
n→∞

∫

X

gn dµ = lim
n→∞

∫

X

χEn
f dµ

= lim
n→∞

∫

En

f dµ.

(S9.4)

Proposition . Let (X,B, µ, T ) be a MPS. The following are equivalent

(i) T is ergodic.

(ii) Whenever f : X → C is measurable and UT f = f , then f is constant a.e..

(iii) Whenever f : X → C is measurable and UT f = f a.e., then f is constant a.e..

(iv) Whenever f : X → R is measurable and UT f = f , then f is constant a.e..

(v) Whenever f : X → R is measurable and UT f = f a.e., then f is constant a.e..

Proof. The following implications are trivial: (iii) ⇒ (ii), (v) ⇒ (iv), (iii) ⇒ (v), (ii) ⇒ (iv).

(v)⇒(iii) and (iv)⇒ (ii). By considering real and imaginary parts and using the fact
that UT is linear, it suffices to consider f ∈ MR(X,B).

(ii)⇒(i) Let A ∈ B be such that T−1(A) = A. Then χA is measurable and UT χA =
χT−1(A) = χA, so we can apply (ii) to conclude that χA is constant a.e. Thus, either χA = 1
a.e., in which case µ(X \ A) = 0 or χA = 0 a.e., in which case µ(A) = 0.



(i)⇒(v) Let f : X → R be measurable with UT f = f a.e.. Hence, if Y := {x ∈ X |
UT f = f}, then µ(Y ) = 1. Define for each m ≥ 0 and k ∈ Z,

Am,k =

{

x ∈ Y |
k

2m
≤ f(x) <

k + 1

2m

}

. (D.5)

It is easy to see that the T -invariance of f implies that T−1(Am,k) = Am,k for all m, k.
Furthermore, for fixed m ≥ 0, (Am,k)k∈Z is a countable family of pairwise disjoint sets

satisfying Y =
⋃

k∈Z

Am,k. The ergodicity of T implies that for every m ≥ 0 there exists

km ∈ Z such that µ(Am,km
) = 1 and µ(Am,k) = 0 for all k 6= km. Let

A :=
⋂

m≥0

Am,km
.

Note that

Y =
⋂

m≥0

⋃

k∈Z

Am,k =
⋃

(A1,p1
∩ A2,p2

∩ . . . Am,pm
∩ . . .)

If at least one of pm’s is different from km, then the measure of the intersection is 0. Thus,
we must have µ(A) = 1.

Let us prove that f is constant on A. Assume by contradiction that there are x, y ∈ A
with f(x) − f(y) > 0 and take M ≥ 0 such that 2M(f(x) − f(y)) > 1. On the other
hand kM ≤ 2Mf(x), 2Mf(y) < kM + 1, hence 2M(f(x) − f(y)) < 1. We have got a
contradiction.


